Affinity Maturation of an ERBB2-Targeted SPECT Imaging Peptide by In Vivo Phage Display

Benjamin M. Larimer, William D. Thomas, George P. Smith, Susan L. Deutscher

2014 August

ABSTRACT

Purpose

The goal of this study was to improve the pharmacokinetic properties and specificity of an ERBB2-targeted peptide for SPECT imaging.

Procedures

Bacteriophages (phages) displaying the ERBB2 targeting sequence, KCCYSL, flanked by additional random amino acids were used for in vivo selections in mice-bearing ERBB2-expressing MDA-MB-435 human breast xenografts. Phage-displayed peptides were evaluated for ERBB2 and cancer cell binding affinity and specificity in vitro, and one peptide was radiolabeled with 111In-DOTA and biodistribution and SPECT imaging properties were compared to the first generation peptide, 111In-DOTA-KCCYSL.

Results

In vivo phage display selected two peptides, 1-D03 (MEGPSKCCYSLALSH) and 3-G03 (SGTKSKCCYSLRRSS), with higher breast carcinoma cell specificity and similar ErbB2 affinity (236 and 289 nM, respectively) to the first generation peptide. The corresponding radiolabeled probes bound with higher affinity to target cancer cells than 111In-DOTA-KCCYSL; however, only 111In-DOTA-1-D03 demonstrated higher specificity for MDA-MB-435 cells. Biodistribution analysis demonstrated that although 111In-DOTA-1-D03 had slightly reduced tumor uptake (0.661 % ID/g) in comparison to 111In-DOTA-KCCYSL (0.78 %/ID/g), its dramatic improvement in blood clearance led to a significantly higher tumor/blood ratio (6.02:1). Non-specific uptake was also reduced in most organs including heart, lung, muscle, bone, and kidneys. SPECT imaging revealed tumor-specific uptake of 111In-DOTA-1-D03, which was confirmed by blocking with unlabeled 1-D03 peptide.

Conclusions

This is the first evidence that SPECT imaging peptides with improved tumor specificity and pharmacokinetics can be obtained by in vivo phage display affinity maturation. The combination of ERBB2-specific binding, rapid clearance, and tumor specificity may make 1-D03 a viable candidate for clinical imaging studies.

Key words

Breast cancer Molecular imaging Peptide SPECT In vivo phage display Affinity maturation 

NOTES

Acknowledgments

The authors would like to acknowledge the contributions of Jessica Newton-Northup, Marie T. Dickerson, and the VA Biomolecular Imaging Core. Work funded by Department of Veterans Affairs VA Merit 5I0 1BX000964.

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

REFERENCES

1.
Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29PubMedCrossRefGoogle Scholar
2.
Alroy I (1997) The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand–receptor interactions. FEBS Lett 410:83PubMedCrossRefGoogle Scholar
3.
Graus-Porta D, Beerli RR, Daly JM, Hynes NE (1997) ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 16:1647–1655PubMedCentralPubMedCrossRefGoogle Scholar
4.
Hynes NE, Stern DF (1994) The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim Biophys Acta 1198:165–184PubMedGoogle Scholar
5.
Witton CJ, Reeves JR, Going JJ et al (2003) Expression of the HER1–4 family of receptor tyrosine kinases in breast cancer. J Pathol 200:290–297PubMedCrossRefGoogle Scholar
6.
Milenic DE, Yokota T, Filpula DR et al (1991) Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res 51:6363–6371PubMedGoogle Scholar
7.
Fujimori K (1990) A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med 31:1191PubMedGoogle Scholar
8.
Landon LA, Zou J, Deutscher SL (2004) Is phage display technology on target for developing peptide-based cancer drugs? Curr Drug Dis Technol 1:113–132CrossRefGoogle Scholar
9.
Landon LA, Deutscher SL (2003) Combinatorial discovery of tumor targeting peptides using phage display. J Cell Biochem 90:509–517PubMedCrossRefGoogle Scholar
10.
Peletskaya E, Glinsky G, Deutscher S, Quinn T (1996) Identification of peptide sequences that bind the Thomsen-Friedenreich cancer-associated glycoantigen from bacteriophage peptide display libraries. Mol Divers 2:13–18PubMedCrossRefGoogle Scholar
11.
Ruoslahti E (2000) Targeting tumor vasculature with homing peptides from phage display. Semin Cancer Biol 10:435–442PubMedCrossRefGoogle Scholar
12.
Karasseva NG, Glinsky VV, Chen NX et al (2002) Identification and characterization of peptides that bind human ErbB-2 selected from a bacteriophage display library. J Protein Chem 21:287–296PubMedCrossRefGoogle Scholar
13.
Kumar SR, Quinn TP, Deutscher SL (2007) Evaluation of an 111In-radiolabeled peptide as a targeting and imaging agent for ErbB-2 receptor-expressing breast carcinomas. Clin Cancer Res 13:6070–6079PubMedCrossRefGoogle Scholar
14.
Deutscher SL, Figueroa SD, Kumar SR (2009) 111In-labeled KCCYSL peptide as an imaging probe for ErbB-2-expressing ovarian carcinomas. J Label Compd Radiopharm 52:583–590Google Scholar
15.
Kocks C, Rajewsky K (1988) Stepwise intraclonal maturation of antibody affinity through somatic hypermutation. Proc Natl Acad Sci U S A 85:8206–8210PubMedCentralPubMedCrossRefGoogle Scholar
16.
Landon LA, Peletskaya EN, Glinsky VV et al (2003) Combinatorial evolution of high-affinity peptides that bind to the Thomsen-Friedenreich carcinoma antigen. J Protein Chem 22:193–204PubMedCrossRefGoogle Scholar
17.
18.
Newton JR, Kelly KA, Mahmood U et al (2006) In vivo selection of phage for the optical imaging of PC-3 human prostate carcinoma in mice. Neoplasia 8:772–780PubMedCentralPubMedCrossRefGoogle Scholar
19.
Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
20.
Huang J, Ru B, Li S, Lin H, Guo F-B (2010) SAROTUP: scanner and reporter of target-unrelated peptides. J Biomed Biotechnol. doi: 10.1155/2010/101932
21.
Franklin MC, Carey KD, Vajdos FF et al (2004) Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5:317–328PubMedCrossRefGoogle Scholar
22.
Cho H-S, Mason K, Ramyar KX et al (2003) Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421:756–760PubMedCrossRefGoogle Scholar
23.
Molina MA, Codony-Servat J, Albanell J et al (2001) Trastuzumab (Herceptin), a humanized anti-HER2 receptor monoclonal antibody, inhibits basal and activated HER2 ectodomain cleavage in breast cancer cells. Cancer Res 61:4744–4749PubMedGoogle Scholar
24.
Lobo ED, Hansen RJ, Balthasar JP (2004) Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93:2645–2668PubMedCrossRefGoogle Scholar
25.
Zhang X, Cabral P, Bates M et al (2010) In vitro and in vivo evaluation of [99mTc (CO) 3]-radiolabeled ErbB-2-targeting peptides for breast carcinoma imaging. Curr Radiopharm 3:308–321CrossRefGoogle Scholar
26.
Vegt E, de Jong M, Wetzels JFM et al (2010) Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med 51:1049–1058PubMedCrossRefGoogle Scholar
27.
Miao Y, Fisher DR, Quinn TP (2006) Reducing renal uptake of 90Y- and 177Lu-labeled alpha-melanocyte stimulating hormone peptide analogues. Nucl Med Biol 33:723–733PubMedCrossRefGoogle Scholar
28.
Hoffman TJ, Gali H, Smith CJ et al (2003) Novel series of 111In-labeled bombesin analogs as potential radiopharmaceuticals for specific targeting of gastrin-releasing peptide receptors expressed on human prostate cancer cells. J Nucl Med 44:823–831PubMedGoogle Scholar
29.
Froidevaux S, Eberle AN, Christe M et al (2002) Neuroendocrine tumor targeting: study of novel gallium-labeled somatostatin radiopeptides in a rat pancreatic tumor model. Int J Cancer 98:930–937PubMedCrossRefGoogle Scholar
30.
Good S, Walter MA, Waser B et al (2008) Macrocyclic chelator-coupled gastrin-based radiopharmaceuticals for targeting of gastrin receptor-expressing tumours. Eur J Nucl Med 35:1868–1877CrossRefGoogle Scholar
31.
Chen J, Cheng Z, Owen NK et al (2001) Evaluation of an 111In-DOTA–rhenium cyclized α-MSH analog: a novel cyclic-peptide analog with improved tumor-targeting properties. J Nucl Med 42:1847–1855PubMedGoogle Scholar
32.
Deutscher SL (2010) Phage display in molecular imaging and diagnosis of cancer. Chem Rev 110:3196–3211PubMedCentralPubMedCrossRefGoogle Scholar
33.
Derda R, Tang S, Li SC, Ng S et al (2011) Diversity of phage-displayed libraries of peptides during panning and amplification. Molecules 16:1776–1803PubMedCrossRefGoogle Scholar
34.
Olsen JO, Pozderac RV, Hinkle G et al (1995) Somatostatin receptor imaging of neuroendocrine tumors with indium-111 pentetreotide (Octreoscan). Semin Nucl Med 25:251–261PubMedCrossRefGoogle Scholar
35.
Liu S, Edwards DS (1999) 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev 99:2235–2268PubMedCrossRefGoogle Scholar
36.
Yu D, Hung M-C (2000) Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene 19:6115PubMedCrossRefGoogle Scholar
37.
Krenning EP, Kwekkeboom DJ, Bakker WH et al (1993) Somatostatin receptor scintigraphy with [111In-DTPA-d-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 20:716–731PubMedCrossRefGoogle Scholar
38.
Béhé M, Becker W, Gotthardt M et al (2003) Improved kinetic stability of DTPA-dGlu as compared with conventional monofunctional DTPA in chelating indium and yttrium: preclinical and initial clinical evaluation of radiometal labelled minigastrin derivatives. Eur J Nucl Med Mol Imaging 30:1140–1146PubMedCrossRefGoogle Scholar
39.
Ferro-Flores G, de Murphy CA, Rodr`guez-Corte`s J et al (2006) Preparation and evaluation of 99mTc-EDDA/HYNIC-[Lys3]-bombesin for imaging gastrin-releasing peptide receptor-positive tumours. Nucl Med Commun 27:371–376PubMedCrossRefGoogle Scholar
40.
Thakur ML, Aruva MR, Gariepy J et al (2004) PET imaging of oncogene overexpression using 64Cu-vasoactive intestinal peptide (VIP) analog: comparison with 99mTc-VIP analog. J Nucl Med 45:1381–1389PubMedGoogle Scholar
41.
Rolleman E, Valkema R, de Jong M et al (2003) Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur J Nucl Med Mol Imaging 30:9–15PubMedCrossRefGoogle Scholar
42.
Vegt E, van Eerd JEM, Eek A et al (2008) Reducing renal uptake of radiolabeled peptides using albumin fragments. J Nucl Med 49:1506–1511PubMedCrossRefGoogle
© World Molecular Imaging Society 2014

Share this post